Bayesian Speech and Language Processing
نویسندگان
چکیده
A range of statistical models is detailed, from hidden Markov models to Gaussian mixture models, n-gram models, and latent topic models, along with applications including automatic speech recognition, speaker verification, and information retrieval. Approximate Bayesian inferences based on MAP, Evidence, Asymptotic, VB, and MCMC approximations are provided as well as full derivations of calculations, useful notations, formulas, and rules.
منابع مشابه
Teaching approaches to Computer Assisted Language Learning
Computers have been used for language teaching ever since the 1960's.Learning a second language is a challenging endeavor, and, for decades now, proponents of computer assisted language learning (CALL) have declared that help is on the horison. We investigate the suitability of deploying speech technology in computer based systems that can be used to teach foreign language skills. In this case,...
متن کاملLanguage Modeling With Dynamic Bayesian Networks Using Conversation Types and Part of Speech Information
In this paper we investigate whether more accurate modeling of differences in language in different types of conversations, e.g. formal presentations vs. spontaneous conversations can improve the quality of a language model. We also investigate whether the modeling of sentence lengths can improve a language model. A language model is an important component of statistical natural language proces...
متن کاملDeveloping a Semantic Similarity Judgment Test for Persian Action Verbs and Non-action Nouns in Patients With Brain Injury and Determining its Content Validity
Objective: Brain trauma evidences suggest that the two grammatical categories of noun and verb are processed in different regions of the brain due to differences in the complexity of grammatical and semantic information processing. Studies have shown that the verbs belonging to different semantic categories lead to neural activity in different areas of the brain, and action verb processing is r...
متن کاملNote from the Editor: Special issue on speech processing and soft computing
This special issue of the Journal is devoted to the work of twelve eminent speech scientists who apply novel soft computing methods to address some of the most difficult and persistent problems facing speech recognition systems today. I first heard these scientists discuss their innovative soft computing algorithms at the University of Salamanca where the Sixth International Conference on Soft ...
متن کاملA Dynamic Bayesian Framework to Model Context and Memory in Edit Distance Learning: An Application to Pronunciation Classification
Sitting at the intersection between statistics and machine learning, Dynamic Bayesian Networks have been applied with much success in many domains, such as speech recognition, vision, and computational biology. While Natural Language Processing increasingly relies on statistical methods, we think they have yet to use Graphical Models to their full potential. In this paper, we report on experime...
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015